1. Kutschera, U. and Khanna, R. (2021) Experimental plant research and the discovery of carbon dioxide-mediated global greening: a tribute to Wilhelm Pfeffer (1845–1920).  J. Plant Biochem. Biotech. In Press.

  2. Khanna, R., and Kutschera, U. (2020) Thought Experiment: A hidden signal and an Etioreceptor. J. Plant Biochem. Biotech. 29(4):832–837.

  3. Khanna, R., and Kutschera, U. (2020) Arabidopsis: Two-hundredths anniversary of its name and the possibility of a hidden universal regulatory signal. J. Plant Biochem. Biotech. 29(4):575–579.

  4. Kutschera, U., and Khanna, R. (2020) Auxin action in developing maize coleoptiles: challenges and open questions. Plant Signaling and Behavior.

  5. Deng, S., Wipf, H.M-L., Pierroz, G., Raab, T.K., Khanna, R., Coleman-Derr, D. (2019) A plant growth-promoting microbial soil amendment dynamically alters the strawberry root bacterial microbiome. Nature Scientific Reports 9:17677.

  6. Kutschera, U., and Khanna, R. (2016) Plant gnotobiology: Epiphytic microbes and sustainable agriculture. Plant Signaling & Behavior. VOL. 11, NO. 12, e1256529.

  7. Khanna, R., Li, J., Tseng, T-S., Schroeder, J., Ehrhardt, D. and Briggs, W.R. (2014) COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure. Mol. Plant 7:1441-1454.

  8. Preuss, S.B., Meister, R., Xu, Q., Urwin, C., Tripodi, F. Screen, S., Anil, V.S., Zhu, S., Morrell, J., Liu, G., Ratcliffe, O.J., Reuber, T.L., Khanna, R., Goldman, B.S., Bell, E., Ziegler, T., McClerren, A.M., Ruff, T.G., and Petracek, M.E. (2012) Expression of the Arabidopsis thaliana BBX32 Gene in Soybean Increases Grain Yield. PLoS One. 7:e30717. doi:10.1371/journal.pone.0030717

  9. Holtan, H.E., Bandong, S., Marion, C.M., Adam, L., Tiwari, S.B., Shen, Y., Maloof, J.N., Maszle, D.R., Ohto, M-a., Preuss, S., Meister, R., Petracek, M.E., Repetti, P.P., Reuber, T.L., Ratcliffe, O.J., and Khanna, R. (2011) BBX32, an Arbidopsis B-box protein, functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21. Plant Phys. 156:2109-2123.

  10. Pokhilko, A., Ramos, J.A., Holtan, H., Maszle, D.R., Khanna, R., and Millar, A.J. (2011) Ubiquitin ligase switch in plant photomorphogenesis: a hypothesis. J. Theor. Biol. 270:31-41.

  11. Khanna, R., Kronmiller, B., Maszle, D.R., Coupland, G., Holm, M., Mizuno, T., and Wu, S.H. (2009) The Arabidopsis B-Box Zinc Finger Family. Plant Cell 21: 3416-3420.

  12. Khanna, R., Shen, Y., Marion, C.M., Tsuchisaka, A., Theologis, A., Schaefer, E. and Quail, P.H. (2007) The basic helox-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19:3915-3929.

  13. Shen, Y., Khanna, R., Carle, C.M., and Quail, P.H. (2007) Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red light activation. Plant Phys. 145:1043-1051.

  14. Khanna, R., Shen, Y., Toledo-Ortiz, G., Kikis, E.A., Johanneson, H., Hwang, Y.-S. and Quail, P.H. (2006) Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal de-etiolation. Plant Cell 18:2157-2171.

  15. Khanna, R., Santner, A.A. and Watson, J.C. (2006) Activity and photoregulated expression of PsPK3. Plant Sci. 170:347-355.

  16. Kikis, E.A., Khanna, R. and Quail, P.H. (2005) ELF4 is a phytochrome-regulated component of a negative feedback loop involving the central oscillator components CCA1 and LHY. Plant J. 44:300-313.

  17. Khanna, R., Huq, E., Kikis, E.A., Al-Sady, B., Lanzatella, C. and Quail, P.H. (2004) A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 16 (11):3033-3044.

  18. Tepperman, J.M., Hudson, M.E., Khanna, R., Zhu, T., Chang, S.H., Wang, X. and Quail, P.H. (2004) Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J. 38: 725-739.

  19. Khanna, R., Kikis, E.A. and Quail, P.H. (2003) Early Flowering 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Phys. 133:1530-1538.

  20. Khanna, R., Lin, X. and Watson, J.C. (1999) Photoregulated expression of the PsPK3 and PsPK5 genes in pea seedlings. Plant Mol. Biol. 39:231-242.

  21. Ma, J., Khanna, R., Fukasawa-Akada, T., Poisso, J., Deitzer, G.F. and Watson, J.C. (1998) PK3At (Accession No. AF082391): An Arabidopsis homolog of the PsPK3 protein kinase from Pisum sativum L. Plant Physiol. 118:712.

  22. Khanna, R. and Watson, J.C. (1997) cDNA sequence of PsPK3 (Accession No. U11533), a protein kinase from Pisum sativum L. Plant Physiol. 114 (4):1569.

  23. Watson, J.C., Khanna, R., Mitra, T., Ma, J. and Deitzer, G.F. (1997) Light – regulated protein kinase genes. Focus. 19 Supplement: 14-15.